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SUMMARY

Protein kinases catalyze protein phosphorylation
and thereby control the flow of information through
signaling cascades. Currently available methods for
concomitant assessment of the enzymatic activities
of multiple kinases in complex biological samples
rely on indirect proxies for enzymatic activity, such
as posttranslational modifications to protein kinases.
Our laboratories have recently described a method
for directly quantifying the enzymatic activity of
kinases in unfractionated cell lysates using sub-
strates containing a phosphorylation-sensitive un-
natural amino acid termed CSox, which can bemoni-
tored using fluorescence. Here, we demonstrate the
utility of this method using a probe set encompass-
ing p38a, MK2, ERK1/2, Akt, and PKA. This panel of
chemosensors provides activity measurements of
individual kinases in a model of skeletal muscle dif-
ferentiation and can be readily used to generate indi-
vidualized kinase activity profiles for tissue samples
from clinical cancer patients.

INTRODUCTION

Current techniques for analyzing the signaling dynamics of

multiple protein kinases in complex samples use proxies for

kinase activity, such as antibody- or mass spectrometry-based

analysis of phosphorylation states (Choudhary and Mann,

2010; Nielsen et al., 2003; O’Neill et al., 2006; Xiao et al., 2010).

In one embodiment of this approach, the activities of target

kinases are inferred through analysis of the phosphorylation

state of specific substrates. For example, activation of PKA is

often demonstrated through the phosphorylation of its down-

stream substrate CREB (Chen et al., 2005; Gonzalez and Mont-

miny, 1989). These inferences of enzymatic activity generally

lack a temporal component, making the interpretation of enzy-

matic rates difficult. In a complementary approach, the activation

of particular kinases is inferred through the phosphorylation state

of those kinases. Coupling this antibody-based approach with
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isoelectric focusing allows for quantitative measurement of the

phosphorylation status of a kinase (O’Neill et al., 2006). However,

measurements of activating phosphorylationmodifications on an

individual kinase are inherently univariate and do not take into

account other cellular processes, such as additional posttrans-

lational modifications that may affect kinase activity (Chen

et al., 2001). Indeed, activating phosphorylation modifications

of a particular kinase do not always correlate with its enzymatic

activity (Kumar et al., 2007). This has prompted a shift away

fromanalysis of proxies for kinase activation toward the develop-

ment of sensors capable of reporting directly on the enzymatic

activity of a particular kinase. Notably, FRET-based sensors,

incorporating genetically encodable fluorescent proteins, have

been used to detect kinase activity in living cells (Kunkel et al.,

2007; Sato et al., 2007). However, these probes often only pro-

duce modest increases in fluorescence of �20%–60% upon

phosphorylation (Rothman et al., 2005), and their application in

tissues isolated from clinical patients has not been demon-

strated. Recently, the Lawrence laboratory observed that

tyrosine phosphorylation alleviates quenching of a proximal fluo-

rophore (Wang et al., 2006). This phenomenon was utilized to

generate orthogonal activity probes capable of monitoring two

tyrosine kinase activities simultaneously (Wang et al., 2010).

Although elegant, this strategy is currently restricted to tyrosine

kinases and does not allow for analysis of serine/threonine

kinase activities, which constitute important downstream sig-

naling nodes within cellular pathways.

In order to address these issues, our laboratories developed

a technique in which a phosphorylation-sensitive fluorescent

amino acid, Sox, is used to monitor kinase activity in unfractio-

nated cell lysates (Shults et al., 2005). Phosphorylation at a

proximal residue dramatically increases the affinity of Sox for

Mg2+, leading to an increase in fluorescence, a process termed

chelation-enhanced fluorescence (Shults and Imperiali, 2003).

This sensing modality is general and can be applied to sub-

strates for both tyrosine and serine/threonine kinases. Recently,

we have extended this strategy through the development of

a second-generation cysteine derivative of the Sox fluorophore,

which we term CSox (Lukovi�c et al., 2008) (Figures 1A and 1B).

The increased flexibility of CSox allows for incorporation

of both N- and C-terminal kinase recognition elements into

second-generation probes, leading to improved selectivity and

kinetic properties as well as lower sample demand. We have
vier Ltd All rights reserved
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Figure 1. CSox-Based Kinase Activity Probes

(A) Phosphorylation of a kinase substrate containing CSox leads to chelation of

Mg2+ and an increase in CSox fluorescence.

(B) Phosphorylation can be directly monitored in unfractionated lysates by

exciting at 360 nm and measuring emission at 485 nm. The rate of increase in

fluorescence is proportional to enzymatic activity.

(C) A panel of selective kinase activity sensors with corresponding kinetic

parameters is shown (Lukovi�c et al., 2008, 2009; Stains et al., 2011). The CSox

amino acid and sites of phosphorylation are underlined. The p38a sensor

contains a flexible 8-amino-3,6-dioxaoctanoic acid (AOO) linker between

a p38a peptide-based docking sequence and phosphorylation site (Stains

et al., 2011), whereas the CSox phosphorylation site of the ERK1/2 sensor

is ligated to a protein docking domain for ERK1/2 (Lukovi�c et al., 2009).

Canonical pathways for each kinase are indicated.

See also Figure S1.

Figure 2. Longitudinal Kinase Activity Dynamics During Differentia-

tion of C2C12 Cells
A hierarchal clustering analysis of fold changes in kinase activity relative to

cells grown under mitogen-rich conditions demonstrates clustering of kinases

based on similar trends in activity.

See also Figure S2 and Movie S1.
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previously developed CSox-based sensors for p38a, ERK1/2,

MK2, Akt, and PKA (Lukovi�c et al., 2008; Lukovi�c et al., 2009;

Shults et al., 2005; Stains et al., 2011) and have derived kinetic

parameters for each substrate (Figure 1C). The selectivity of

the p38a and ERK1/2 sensors has been verified using a panel

of recombinant kinases with potential overlapping substrate

specificity as well as unfractionated cell lysates in combina-

tion with inhibitors and immunodepletions (Lukovi�c et al., 2009;

Stains et al., 2011). In a similar manner, the selectivity of

second-generation CSox sensors for MK2, Akt, and PKA

(Lukovi�c et al., 2008) were evaluated in unfractionated cell

lysates through the use of inhibitor assays and immunodeple-

tions, demonstrating that these sensors are also selective for

the targeted kinase (Figure S1 available online). Importantly,

the improved catalytic efficiency of the MK2 and Akt second-

generation sensors (Lukovi�c et al., 2008) (10- and 23-fold re-

spectively), compared with our previous design (Shults et al.,

2005), allows for decreased sample and substrate demand while

maintaining assay performance. In addition, off-target kinase

inhibitorsmay be removed from theMK2 assaywhilemaintaining

selectivity (Figure S1).

The above panel of selective kinase activity sensors has

the potential to provide information concerning signaling flux

through biologically important pathways that impinge upon cell

survival, growth, metabolism, and inflammatory responses (Fig-

ure 1C). To demonstrate the utility of this panel, we used it two

different ways—namely, longitudinally and latitudinally. In the
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first, we delineate perturbations in multipathway signaling

network activities during skeletal muscle differentiation; in the

second, we compare multipathway signaling network activities

between diseased and normal tissue in individual human tumors,

potentially clarifying previously ambiguous roles for kinases

within the panel. These experiments highlight the utility of direct

activity measurements in providing unique information concern-

ing operative signaling pathways.

RESULTS AND DISCUSSION

A Longitudinal Analysis of Kinase Activity during
Skeletal Muscle Differentiation
We began with a study aimed to determine how multiple kinase

activities might vary during a time course of cellular differentia-

tion. We selected skeletal muscle differentiation as an important

example application and implemented the well-studied C2C12

mouse myoblast cell line. These mononucleated progenitor cells

can be induced to exit the cell cycle and differentiate into fused

multinucleated myotubes upon mitogen withdrawal (Figure S2)

and display characteristic phenotypic changes such as sponta-

neous contraction (Movie S1). C2C12 lysates were prepared

after mitogen withdrawal over a 5-day period, and, in addition

to the phenotypic changes noted above, differentiation was

confirmed by monitoring the expression of early and late stage

markers (Figure S2).

Having established the phenotypic differentiation process,

we determined the activity of each kinase in the panel relative

to myoblasts grown under mitogen-rich conditions for two

independent preparations of cell lysates (Figure S2). Relative

changes in kinase activity were used in hierarchical clustering

analysis to identify activities which correlate with differentiation

(Figure 2). This analysis identified three clusters that showed

distinct activity profiles. Cluster 1 contained PKA and Akt activ-

ities, which were positively correlated with differentiation (Fig-

ure 3A). In addition, western blot analysis of phospho-Akt levels

correlated well with the direct Akt activity assays and indicated

that the increase in observed Akt activity may be due to an

increase in Akt expression (Figure 3A, inset). These data support

previous observations indicating that both PKA and Akt are
–217, February 24, 2012 ª2012 Elsevier Ltd All rights reserved 211



Figure 3. Relative Activity Trends of Kinases during Differentiation of C2C12 Cells

(A–C) Fold changes in activity for clusters 1, 2, and 3, respectively. Activity assays demonstrate linkages between pathways that are operative during

differentiation, and insets within each panel show western blots for the corresponding phosphokinase with tubulin as a loading control. Relative changes in

activity are the average of six total activity assays performed on two independently prepared C2C12 cell lysates ± SEM.

(D) Western blot analysis of p38a and g expression during C2C12 differentiation. Tubulin serves as a loading control.

See also Figure S2 and Movie S1.
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positive regulators of myogenesis (Chen et al., 2005; Fujio et al.,

1999; Mukai and Hashimoto, 2008; Rommel et al., 1999). Cluster

2 activity, which includes ERK1/2 andMK2, displayed a biphasic

activity profile (Figure 3B). Biphasic ERK1/2 activity has been

previously observed using western blot analysis and did not

correlatewithERKexpression (Figure 3B, inset). ThisERKactivity

profile is thought to facilitate exit from the cell cycle (Rommel

et al., 1999; Tagawa et al., 2008). Interestingly, MK2 activity

displays a similar activity profile, which is in agreement with

previous studies that have observed a linkage between MK2

and ERK1/2 signaling (Aldridge et al., 2009; Coxon et al., 2003),

whichmay also operate duringmyogenesis. Finally, p38a activity

decreased marginally during the time course studied (Figure 3C)

and appeared to be negatively correlatedwith phopho-p38 levels

while being positively correlated with total p38 expression, as

observed by western blotting (Figure 3C, inset). Importantly,

currently available phospho-p38 antibodies do not distinguish

between p38 isoforms (a, b, g, and d). Indeed, our observed

pattern of p38a activity agrees with assays performed on kinase

immunoprecipitated with antibodies that specifically recognize

this isoform, regardless of phosphorylation status (Perdiguero

et al., 2007). The inability to resolve p38 isoform activation with

currently available antibodies has lead to the use of mice ex-

pressing reduced amounts of each p38 isoform (a, b, g, and d)
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or RNA interference to identify essential p38 isoforms for myo-

genesis (Perdiguero et al., 2007; Wang et al., 2008). However,

these relatively complex genetic analyses have been unable to

identify the p38 isoform observed using phosphospecific anti-

bodies. Our data suggest that the observed increases in the

phosphorylation state of p38 are not due to p38a, but are likely

due to an alternate isoform. Interestingly, p38g transcript (Tomc-

zak et al., 2004) and protein levels (Wang et al., 2008) (Figure 3D)

increase dramatically following mitogen withdrawal in C2C12

cells, and overexpression of this p38 isoform has previously

been shown to stimulate C2C12 differentiation (Lechner et al.,

1996). Previous studies have demonstrated that p38d is not ex-

pressed in C2C12 cells and that p38b expression decreases

dramatically during differentiation in contrast to p38a, which

is expressed throughout the myogenic program (Wang et al.,

2008) (Figure 3D). Furthermore, in vitro activity assays using

immunoprecipitated kinase have demonstrated an increase in

p38g activity during myogenesis (Perdiguero et al., 2007). Taken

together, these observations could account for the observed

increase in theamount of anunidentifiedphosphorylatedp38 iso-

form (Perdiguero et al., 2007). In this light, our observations

support distinct roles for more than one p38 isoform during myo-

genesis (Wang et al., 2008) and are consistent with previous

observations that indicate an essential role for p38a (Perdiguero
vier Ltd All rights reserved



Figure 4. Kinase Activity Profiling in Human Tumors

(A) A workflow diagram for analysis of matched tissues using CSox-based kinase activity sensors.

(B) Clinical and histological features of cancer patients.

See also Figure S3.
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et al., 2007), because signaling dynamicswith durations less than

12 hr are not resolved in this experiment. These activitymeasure-

ments underscore the utility of direct activity sensors for deter-

mining operative signaling networks during cell differentiation.

A Latitudinal Analysis of Alterations in Kinase Signaling
in Individual Human Tumors
To examine the capability for ascertaining modulations in

multiple kinase enzymatic activities between normal and dis-

eased tissue samples, we selected the problem of comparing

matched tissues from cancer patients in three different pathol-

ogy contexts (Figure 4A). In particular, our panel of activity pro-

bes contains kinases that may have prognostic value and have

been implicated in the development of breast, prostate, and

lung cancers (Feldman and Feldman, 2001; Gustafson et al.,

2010; Musgrove and Sutherland, 2009). Accordingly, we ob-

tained matched tumor and healthy control tissues from patients

diagnosed with these diseases (Figure 4B) and set out to con-

struct individualized kinase activity profiles for each.

Lysates were prepared from each tissue and normalized to

total protein content, which was verified through analysis of

b-actin levels (Figure S3). In order to demonstrate the robust

reproducibility of the observed changes, assays were performed

in triplicate on three independently prepared sets of lysates from

each pair of matched tissues (Figure S3) and were averaged to

obtain individualized patient activity profiles (Figures 5A–5C).

The ease of sample preparation, rapid analysis time (<1 hr),

and simple instrumentation used for data acquisition make this

method practical for potential applications in diagnostic anal-

yses. Moreover, triplicate assays for the entire sensor panel in

96-well format necessitated only 34 mg of tissue, because

typical lysate total protein yields were R 3 mg/ml. Assays could

also be translated to 384-well plate format (Figure S3), gener-

ating equivalent signal-to-noise while using 4-fold less reagents

and lysate. These activity measurements reflect the specific

biochemistry of individual tumors and could therefore find utility

in both assessing disease state and determining effective treat-

ment strategies (Feldman and Feldman, 2001; Gustafson et al.,

2010; Musgrove and Sutherland, 2009). Indeed in our limited

sample set, we find individual activity profiles that point to (1)

the possible benefit of combining tamoxifen with ERK inhibitors

for the treatment of an individual breast cancer tumor (Musgrove

and Sutherland, 2009) (Figure 5A), (2) increased activity of a

potential marker for aggressive prostate cancer (Pollack et al.,

2009) (Figure 5B), and (3) aberrant activation of p38a and Akt

in a lung cancer tumor (Greenberg et al., 2002; Gustafson

et al., 2010) (Figure 5C). The implications of these unique activity

profiles are discussed in further detail below.
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In the breast tumor samples, clear enhancements in p38a

(3.2 ± 0.34-fold), MK2 (2.7 ± 0.11-fold), and ERK1/2 (2.7 ±

0.15-fold) activities were observed relative to surrounding

normal tissue (Figure 5A). These alterations in activity were sup-

ported by western blot analysis (Figure 5A, inset). The expres-

sion of estrogen, progesterone, and ErbB2 receptors serves to

stratify breast cancer patients and determine clinical treat-

ment strategies (Musgrove and Sutherland, 2009). For example,

patients with estrogen receptor-positive tumors are generally

treated with tamoxifen; however, women treated with tamoxifen

for 5 years still have a 33% recurrence rate after 15 years (Mus-

grove and Sutherland, 2009). Accordingly, diagnostic methods

to predict potential resistance to endocrine therapy are needed.

In this context, the observed increase in ERK1/2 activity along

with receptor status (Figure 5A) provide potential insights into

patient-specific responses to traditional therapy, because this

kinase has been linked to the development of tumors that

are resistant to endocrine therapy (Musgrove and Sutherland,

2009). Moreover, the current difficulty in classifying tumors

according to perturbations in enzyme activity is thought to

have contributed to the variable results obtained in clinical trials

that attempted to resensitize tamoxifen-resistant tumors through

administration of ERK inhibitors (Musgrove and Sutherland,

2009). These results suggest that information from direct kinase

activity measurements may be useful for identifying individuals

who could benefit from combination therapy.

In the prostate tumor sample analyzed here, only PKA activity

was altered when compared to surrounding normal tissue, with

an increase in activity of 1.8 ± 0.08-fold (Figure 5B). A variety

of mechanisms for progression of prostate cancers toward

androgen independence in response to traditional androgen

deprivation therapy have been described, including activation

of ERK and Akt (Feldman and Feldman, 2001). Unfortunately,

tumors that have progressed to androgen independence gener-

ally lead to poor clinical outcomes. Consequently, methods

capable of identifying individuals at risk for progression to

androgen-independent cancers would be helpful in diagnostic

applications. These data suggest that this particular tumor may

not have progressed to an androgen-independent state as

assessed through activation of either the ERK or Akt pathways

(Feldman and Feldman, 2001). However, a recent study moni-

toring 313 patients with prostate cancer suggests that increases

in PKA activity correlate with poor clinical outcomes in response

to traditional androgen deprivation therapy (Pollack et al., 2009),

indicating that quantitative knowledge of PKA activity would be

useful for providing information on individual disease status.

In the individual lung cancer tumor, an increase in MK2 (2.0 ±

0.06-fold) and Akt (2.3 ± 0.35-fold) along with comparably more
–217, February 24, 2012 ª2012 Elsevier Ltd All rights reserved 213



Figure 5. Individualized Kinase Activity Profiles for Clinical Cancer Patients

(A–C) Activities of the indicated kinases in cancerous (C, red) relative to normal (N, blue) breast, prostate and lung tissues, respectively. Distinct changes in kinase

activity profiles are observed for each patient and correlate to western blots shown in each inset. The left inset in (A) indicates receptor status for the corre-

sponding tumor. Data represent the average ± SEM of nine total kinase activity assays performed on three independent lysate preparations of each individual set

of matched tissues.

See also Figure S3.
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dramatic increases in p38a (8.6 ± 0.98-fold) activity was

observed (Figure 5C). This aberrant increase in p38a activity

was confirmed using western blot analysis and did not appear

to be due to an increase in global p38 expression levels, whereas

the observed increase in Akt activity correlated with an increase

in Akt expression (Figure 5C, inset). Unfortunately, effective

treatments for lung cancer, the leading cause of cancer-related

deaths, have not been identified. Previous studies have indi-

cated that an increase in Akt activity may be linked to lung cancer

progression (Gustafson et al., 2010). The individualized kinase

activity profile developed in this study is consistent with these

reports, revealing a distinct change (2.4-fold) in Akt activity in nor-

mal versus cancerous lung tissue (Figure 5C). Taken together,

these data provide corroborating evidence for Akt activation

and also confirm p38 as a potential therapeutic target in lung

cancer (Greenberg et al., 2002), with p38a contributing substan-

tially to the observed increase in phospho-p38 using western

blot analysis (Figure 5C).

Finally, it should be noted that extensive control experiments,

including inhibitor assays and immunodepletions (Figure S1)

(Lukovi�c et al., 2009; Stains et al., 2011), were performed to

demonstrate the selectivity of the sensor panel in the presence

of endogenous kinases under the described assay condi-

tions. Nonetheless, relatively small contributions from off-target

kinases cannot be ruled out in the absence of an exhaustive

kinetic analysis of every active human kinase. Consequently,

kinase activity alterations are verified through traditional western

blotting analysis, highlighting the importance of complementary

approaches to measuring kinase activities in complex systems.

SIGNIFICANCE

There is a pressing need for robust technologies to enable

direct, quantitative protein kinase activity profiling in basic

cell biology, medical diagnostics, and therapeutic agent

development. Current methods rely heavily on antibody- or

mass spectrometry-based approaches that interrogate pro-
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xies for kinase activity. In this article, we demonstrate

the power of fluorescence-based kinetic analysis, using

the CSox amino acid coupled with kinase-selective sub-

strates, to provide directmeasurements of kinase enzymatic

activity. Although some residual off-target kinase activity is

possible, because the existing panel of sensors has not been

assayed against every knownhumankinase, this limitation is

outweighed by the significant advantages of a fluorescence-

based kinetic assay. In particular, this study demonstrates

that CSox-based probes are capable of providing direct,

quantitative readouts of kinase enzymatic activity that

clarify the biochemistry of cellular differentiation and indi-

vidual human tumors. This work provides a proof of principle

for expansion to larger sample sizes in order to delineate

common perturbations in kinase activities in a given dis-

ease. The generality of this sensing strategy also allows

for the addition of virtually any kinase of interest to the panel,

provided an appropriate substrate sequence can be identi-

fied. Currently, our laboratories are working toward expand-

ing the CSox repertoire as well as determining the prog-

nostic value of kinase activity profiling through the study

of larger patient populations.

EXPERIMENTAL PROCEDURES

General Reagents

All reagents were of ultrapure, metals-free grade where possible. Buffer 1 is

50 mM Tris-HCl (pH = 7.5 at 25�C), 10 mM MgCl2, 1 mM EGTA, 2 mM DTT,

and 0.01% Brij-35-P. Buffer 2 is 50 mM Tris (pH = 7.5 at 25�C), 150 mM

NaCl, 50 mM b-glycerophosphate, 10 mM sodium pyrophosphate, 30 mM

NaF, 1% Triton X-100, 2 mM EGTA, 100 mM Na3VO4, 1 mM DTT, protease

inhibitor cocktail III (10 ml/ml, Calbiochem, 539134), and phosphatase inhibitor

cocktail 1 (10 ml/ml, Sigma, P2825).

Synthesis of Kinase Activity Probes

Sensors were synthesized and characterized as described previously (Lukovi�c

et al., 2008; Lukovi�c et al., 2009; Stains et al., 2011). All peptide-based sensors

were acetyl-capped at the N terminus and included a C-terminal amide. Con-

centrations were determined on the basis of the Sox chromophore by
vier Ltd All rights reserved
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measuring the absorbance at 355 nm in 0.1 M NaOH containing 1 mM

Na2EDTA (extinction coefficient = 8427 M�1cm�1) (Lukovi�c et al., 2008).

Cell Culture and Lysate Preparation

HepG2 human hepatocarcinoma cells (ATCC, HB-8065) and HT-29 colorectal

adenocarcinoma cells (ATCC, HTB-38) were propagated on tissue culture

plastic in either Eagle’s minimum essential medium (EMEM, ATCC, HepG2)

or McCoy’s 5a modified medium (ATCC, HT-29) supplemented with 10%

FBS (Hyclone, Thermo Scientific) and 1% penicillin/streptomycin (Invitrogen)

in a humidified incubator at 37�C and 5% CO2. Prior to stimulation to activate

specific kinases, HepG2 cells were plated at 1 3 105 cells/cm2 on collagen-I

coated 6-well plates (BD Biocoat, Becton Dickinson) and HT-29 cells were

plated at 1 3 105 cells/cm2 on tissue culture treated plastic 6-well plates or

10-cm dishes for inhibitor studies and immmunodepletions, respectively.

Both cell types were grown for 24 hr in their respective full medium. Cells

were then serum-starved in serum-free medium for 18 hr and dosed with either

NaCl (250mM) for 30min, insulin (Sigma, I9278, 500 ng/ml) for 5min, or forsko-

lin (Cell Signaling, 3828, 30 mM) for 15 min. Pretreatment with the upstream

kinase inhibitors SB202190 (Calbiochem, 559388), LY294002 (Calbiochem,

440204), or wortmannin (Calbiochem, 681675) was accomplished by adding

the indicated molar concentrations to serum-free media 1 hr prior to stimula-

tion. Inhibitor dilutions were prepared such that cells experienced a constant

DMSO concentration of 0.1% for all dosing conditions. At the indicated time

points, cells were washed with ice-cold PBS and lysed on ice in Buffer 2.

Lysates were incubated on ice for 15 min and were clarified by centrifugation.

Supernatants were flash frozen in liquid nitrogen and stored at �80�C. These
lysates were used to validate second generation CSox-based activity probes

for MK2, Akt, and PKA. These experiments demonstrated that less sensor and

cell lysate could be used to obtain robust signal-to-noise with the second

generation of probes and that inhibitors could be removed from assays

for MK2.

HeLa cells were propagated in DMEM (Invitrogen, 11995) supplemented

with 10% heat-inactivated FBS and 1% penicillin/streptomycin in a humidified

incubator at 37�C and 5% CO2. NIH 3T3 cells were propagated in DMEM

supplemented with 10% FBS and 1% penicillin/streptomycin in a humidified

incubator at 37�C and 5% CO2. Prior to stimulation cells were starved

for 18 hr in DMEM supplemented with 2 mM L-Gln, and 1% penicillin/

streptomycin. Sorbitol was then added to a final concentration of 300 mM,

and lysates were prepared after 1 hr as indicated above using Buffer 2.

C2C12 myoblasts (ATCC, CRL-1772) were propagated in DMEM supple-

mented with 20% FBS and grown in a humidified incubator with a 10% CO2

atmosphere. Prior to mitogen withdrawal, cells were seeded onto 150-mm

collagen-I-coated dishes (BD Biosciences, 354551) at �40% confluency. At

95% confluency (time 0) cells were switched to DMEM supplemented with

2% horse serum. This medium was replenished daily during differentiation.

Lysates were prepared from two separate passages of cells at the indicated

time points using the following procedure. Cells were washed with ice-cold

PBS and lysed on ice in Buffer 2. Lysates were clarified by centrifugation

and supernatants were flash frozen in liquid nitrogen and stored at �80�C.
Total protein concentrations for all cell lysates were determined using the

BioRad protein assay (500-0006) with BSA as a standard. Lysates were

prepared from two separate passages of cells.

Images and videos were acquired using an Olympus IX50 inverted micro-

scope equipped with a 403 phase contrast objective and a QImaging Retiga

2000R camera.

Hierarchical Clustering Analysis

Fold changes in kinase activity were determined relative to time 0 and

hierarchical clustering analysis was performed in MATLAB using the built-in

Bioinformatics Toolbox with the Euclidean distance metric.

Immunodepletion

HT-29 cells were propagated, plated, starved, stimulated with insulin, and

lysed as described above. The flash frozen lysates were thawed on ice and ali-

quotted in replicates of 500 mg total protein for depleted and control conditions

and brought to 100 ml final volume in buffer 2. Lysateswere then incubated with

either 4 mg of anti-Akt/PKB PH domain 1 antibody (Millipore, 05-591) for Akt

immunodepletion or 4 mg of normalmouse IgG (Santa Cruz, sc-2025) as a naive
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antibody control for 2 hr at 4�C on a rotator. Samples were then incubated with

40 ml of Protein G sepharose beads (GE Healthcare, 17-0618-01) for 1 hr at 4�C
on a rotator. Beads were then pelleted, and supernatants were collected and

subjected to two additional rounds of immunodepletion. An input control

lysate was aliquoted and kept on ice during all rounds of immunodepletion

to account for sample and kinase activity loss during incubation and liquid

transfer steps. All lysates were then assayed for Akt kinase activity as

described below.

Tissue Lysate Preparation

Tissues were obtained from surgical discards through the National Disease

Research Interchange (NDRI) in accordance with an institutional review

board-approved protocol from the MIT Committee On the Use of Humans

as Experimental Subjects. Tissue samples were flash frozen in liquid nitrogen

as soon as possible (�1 hr) after surgery. The guidelines for procurement of

snap-frozen tissue may vary slightly because tissues are procured from

various surgical sites. Frozen tissues were dissected into �100 mg sections,

placed in a 50 ml conical tube, and washed thoroughly with ice-cold PBS.

Lysates were prepared by the addition of 3 volumes (in microliters) of Buffer

2 per mg of tissue and subsequent homogenization on ice with an Omni tissue

homogenizer equipped with a plastic homogenizing probe for hard tissues.

Samples were then incubated on ice for 1 hr, followed by clarification by

centrifugation. The supernatants were collected by piercing the lipid layer

and were flash frozen and stored at �80�C. Total protein concentrations

were determined using the BioRad protein assay (500-0006) with BSA as

the standard.

Cell and Tissue Lysate Assays

Assays were conducted as previously described (Lukovi�c et al., 2009; Stains

et al., 2011) using the following concentrations of substrates and amounts of

lysate for each of the indicated kinases: p38a (1 mM substrate and 10 mg

lysate), MK2 (2.5–5 mM substrate and 10–20 mg lysate), ERK1/2 (5 mM

substrate and 40 mg lysate), Akt (2.5–5 mM substrate and 10–20 mg lysate),

and PKA (10 mM substrate and 20 mg lysate). Inhibitors of off-target kinases

were included in assays for p38a (Stains et al., 2011) (1 mM staurosporine),

Akt (Shults et al., 2005) (4 mM PKC inhibitor peptide, 4 mM calmidazolium,

and 5 mM GF109203X; control experiments demonstrated that addition of

PKItide did not influence the rate of phosphorylation of the Akt sensor), and

PKA (Shults et al., 2005) (4 mM PKC inhibitor peptide, 4 mM calmidazolium,

and 5 mM GF109203X). The activity of p38a was determined by background

subtraction in each lysate using 1 mM SB203580 (Stains et al., 2011). Reac-

tions were prepared in Buffer 1 and contained 1 mM ATP, final reaction

volumes were 120 ml. Assays were performed in half-area 96-well plates

(Corning, 3992), and fluorescence was monitored at 485 nm by exciting at

360 nm using a 455 nm cutoff on a Spectramax Gemini XS plate reader

(Molecular Devices) at 30�C. Slopes were determined using linear fits from

Excel during the time in which fluorescence increases were linear with respect

to time (typically 15–60 min); fits are corrected for lag times in the reaction.

Assays with the direct MK2 inhibitor, MK2 Inhibitor III (Calbiochem, 475864),

were conducted using NaCl-stimulated HepG2 lysates in presence of the indi-

cated concentration of inhibitor; DMSO concentrations were 1% in the assay.

Assays with the direct PKA inhibitors, H89 (Cell Signaling, 9844) and PKItide

(Shults et al., 2005), were conducted using forskolin-stimulated HepG2

lysates in the presence of the indicated concentration of inhibitor, in the

case of H89 DMSO concentrations were 3% in the assay. The average fold

changes for biological replicates of C2C12 lysate and tissue preparations

were determined from each individual assay and errors were propagated

accordingly.

384-Well Plate Assays

Assays for MK2 activity in 384-well plates (MatriCal, MP101-1-PS) were con-

ducted in a total volume of 30 ml using 5 mMMK2 substrate and 5 mg of lysate;

reactions were overlaid with 20 ml of white, light mineral oil prior to recording

fluorescence.

Western Blot Analysis

Lysates (20–100 mg total protein) were separated using 12% SDS-PAGE gels,

except for myosin heavy chain which was resolved on a 4%–20% gradient gel
–217, February 24, 2012 ª2012 Elsevier Ltd All rights reserved 215



Chemistry & Biology

Interrogating Signaling via Kinase Activity Probes
(BioRad, 161-1159). Proteins were transferred to a nitrocellulose membrane.

Blots were probed with primary antibodies for myogenin (Santa Cruz Biotech-

nology, sc-12732), myosin heavy chain (R&D Systems, MAB4470), tubulin (Ab-

cam, ab59680), phospho-p38 (Cell Signaling, 9215), total p38 (Cell Signaling,

9212), p38a (Cell Signaling, 9218), p38g (Cell Signaling, 2307), phospho-

ERK1/2 (Cell Signaling, 4377), total ERK1/2 (Millipore, 06-182), phospho-Akt

(Cell Signaling, 9271), total Akt (Cell Signaling, 4685), or b-actin (Abcam,

ab8227), which were detected using an HRP conjugated goat anti-rabbit

(Pierce, 32460) or goat anti-mouse (Pierce, 32430) secondary antibody where

appropriate. Blots were visualized by enhanced chemiluminescence (Pierce,

34075).

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and one movie and can be
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